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Pref ace

The application of differential game theory to the

analysis of aerial combat offers the fascinating prospect

of evaluating weapon systems and combat tactics against

an intelligent, evasive opponent. Unfortunately, it seems

the more complex tht model, the harder it is to maintain

validity. Consequently differential gaming has not yet made

a substantial impact on realistic combat analysis.

One of the limiting factors has been that each player

has had fixed roles of either pursuer or evader. This work

is the result of my efforts to evaluate a method which allows

for a change of roles. The study is based on a general pur-

pose payoff first suggested in the Doctoral Dissertation of

Major Urban H. D. Lynch. then at the Air Force Flight Dy-

namics Laboratory. Although both the game model and the

constant speed, horizontal dynamic model are really too

simple, a particularly fascinating result was trajectories

that correspond to realistic scissors maneuvers.

I am very grateful to my advisor, Professor Gerald

H. Anderson of the Air Force Institute of Technology, whose

knowledge and advice were invaluable. I am also grateful

to many of my fellow students, in particular Captain Robert

D. Powell, without whose practical experience of the problem,

I wosld have been fishing in murkier waters.

0 P. C. Jenkins
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Abstract

The problem investirated is a method of role dý!ermination,

usi-ig a general purpose payoff, in a differential game model

of aerial combat. Role determination i: taken to rean a

conbatant's selection of a combat objective, based on his

re'ative advaatage.

The class of game is two person, free time, zero sum

and perfect information. The aircraft dynamics are restricted

to constant speed in the horizontal plane. The controls for

both players are limited turn rates. A fixed weapon range

establishes a terminaL c(crtraint around one player. Using

limits on the payoff, a game of kind is formulatcd to give

successful termination at weapon range for both piayers. The

pLyoff is based on angular terminal requirements, and allows

for a variety of weapons. Closed form solutions are used to

find the solution in -rý torý- oy. cnnstructing trajectories

and surfaces backwards from cost criteria on the terminal

surface.

A complete solution is not obtained, but the existenci

of zxilated singular arcs for this type of gume is cwnfirmed,

and progress is madj towards fully partitioning the gsme

space. Many resulting traject.ries correspond to realistic

scissors maneuvers, and a met1od of partial role determination

* is proposed, using such, trajectories to iuJicate regions -if

advantage.
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o I. Introduction

Experience over the last decade has re-emphasized

the importance of aerial combat in air warfare. Thib has

resulted in a number of different efforts to improve

the design and operation of combat aircraft and their weapons

by realistically modelling the combat situation.

The energy maneuverability apprcach is useful for ¶

reaching and maintaining a generally advantageous position,

though with no guidance as to what to do with that position

(Ref 4). More extensive optimisation techniques overcome

this drawback to some extent, but are limited lo a restricted

target model (Ref 2). Computer simulations have been designed

to combine energy considerat'ons with ce-tain established

guidancef iaws and ro1i logic (Ref 12). Using this method

realistic encounters result, and useful trade off studies

are possible, though they aro limited by the set of simulation

rules used. Manual combat simulators are powerful tools,

combining *seat of the pants" and scientific analysis; they

are, however, highly subjective. At completely the opposite

end of the spectrum is gaming, and in particular, continuous

(differential) gaminl(Ref 9).

The potential advantage of gaming is the introduction

of active opponents into a completely aral)tical model. flow-

ever, in application t, realistic problems, success Aas been

limited. One limitation his been that many applications have

used a pursuit-evasion game, where one player is a pursuer,

and the other is an evader. The pursuer's aim is to destroy

S_1
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the evader, whose aim is to escape. The roles of each player

are fixed throughout the lame. Realistically however, in

combat between relatively similar aircraft and weapon systers,

each wishes to destroy his opponent. Allowance must be made

for this in a game analysis.

The purpose of tHis investigation is to allow for

a change of roles by using a general purpose payoff. The

basic game moel is zero sum, two person, free time, and

perfect i-fornation. The dynami:cs are restricted to a planar,

constant velocity model, in which each player haL a limited

turn capability.

The problem is discussed iT, Chapter I. The origins

and nature of the problem are related to general ideas of

role determination, and the thesis objective is stated. Game

and dynamic models are established, with accompanying assumptions

and constraints. Finally the payoff is discussed, and general

criteria for determining the outcome of the gare are set un.

/ Chapter III formulates the game fully: the payoff iA

modified to the game, and the necessary conditions then ap-

plied to the problem.

In Chapter IV closed form solutions to the game are

derived for arcs of constant control, and for game surfaces

located at arc junctions.

In Chapter V the closed form solutions are used to find

a complete solution in the large.

0 Chapter VI discusses th? role determination problem

2
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3general, and in relation to the results. Some comparihon

with other game models is made.

It is felt this study makes a definite cintribution

to the differential qame modelling of -trial conbat. The use

of the Lynch payoff in the game results in closed form solutions,

which generate trajctories corresponding to practical scissors

maneuvering. Although complete analysis awaits a full solution.

significant extensions are made to the knowledge about this

type of game and payoff. Finally, a method is proposed for

determining regions of advantage and disadvantage to either

combatant.

03IIII
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Q I1. Discussion of the Problen

Origins of the Problem

The probiem considered here is an extension of work

carried out at the USAF Flight Dynamics Laboratory in the

use of differential gaming to model air-to-air combat.

Specifically, it is a continuation oý work on a general

purpose payoff begun b7 Lynch in his Doctoral Dissertation

(Ref 9:174).

Nature of the Problem

A serious limitation in many of the results of Reference

9 is that the aim (objective) of each aircraft (player) is

fixed throughout che game; usually one aircraft is trying to

(3escape, and the other to capture. Some useful indications

of the form and sensitivity of escape and capture regions

have resulted froi, this work. However, the optimal control

sequences (strategies) produced, sometimes differ considerably

from those expected from experience, thus questioning the

validity of that approach. For example, the slower machine,

unless considerably more maneuverable than its opponent, will

always, under optimal play, be captured. Thus the slow evader

will invariably turn away from the pursuer until, at some

stage, he flies directly away, and is then caught directly

from the rear (Ref 9:80)! In actual combat, the objectives

may change. Assuming the performance of each aiicraft and its

"o weapon system is in roughly the same class, then usually

4
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Q each combatant is, at some stage, hoping for success. Thus

the strategies arc not necessarily ones of pure pursuit or

escape and should reflect an aggressiveness by each combat-

ant.

Based on Baron's approach to this 'dogfight" situation

(Ref 3:6S), the problem of aerial combat is considered to

consist of twcp main parts:

1. Given the sta.es of two players, determine the

role ot each. Ifere role determination is taken to mean:*

a. Which player has an advantage, and to what extent?

b. Based on this relative advantage, what is the

objective of each player?

2. Given the roles, what are the optimal strategies

0 for each player?

Of the two major parts, role determination is the unique and

vital aspect of the combat problem. Other work has been done

on role determination (Refs 10, 11); the important difference

here is that the payoff emphasizes the relative angles

between the combatants at termination.

Thesis Objectives

The primary objective is to study the ,alidity of

using the general purpose payoff in role determination. The

secondary objective, although to a large extent inseparable

from the first, is to develop a technique for using this pay-

off to analyze fully simple problems, and to form a base for

O the addition of more realistic aircraft dynamics.

S
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0 Basic Game j!odel

The combat is modeled as a two person (aircraft), free

time, zero sum, perfect information game. A zero sum game

implies pure competition, and although combat games are

generally regarded as being in this class, they need not

necessarily be so. For example, if twc opponents are both

seeking to close with each other, they may both co-operate

to minimize the time taken to do so. Thus a more realistic

model should be partly co-operative (i.e. non zero sum).

Games of that type are considerably more complicated, and

thus it is felt that results based on a zero sum model are

a necessary first step. The information assumption is

unrealistic under any circumstances; however, it is felt

that obtaining a workable technique based on perfect in-

formation is a necessary simplification in the initial in-

vestigation of the payoff.

yjnLamic •Model

Ir uodeling the aircraft dynamics, the common assumption

of a point mass, a flat earth, and constant gravity are made.

In addition, the speed and altitude of each aircraft is also

held constant. The last two are very limiting, but work has

indicated that including these as variables in the formulation

increases the number of dimensions to a point that makes in-

terpretation of results vary difficult. (Refs 6:47, 9:11S).

These references also indicate that for a given game formulation,

simple dynamic models give a fair indication of what to expect

6
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from more complicated dynanics (Refs 6:46, 9:193).

State and Control V'ariables

f The above assumptions result in a six dimensional

unbounded game apace consisting, for each aircraft, of two

Position co-ordinates in a constant altitude horizontal plane,

and a heading. Six dimensions lead to relatively straight-

forward dynamic eouations ; however, the greater the number

of variables, the more difficult it becomes to interpret the

ýesults. What is required for interpretation is as few

state variables as possible, having close correspondence

to the states which 1'ilots actually use. With a relative

co-ordinate system on one aircraft, the number of states

is reduced to three.

The aircraft are designated A and B, and a body fixed

otating co-ordinate system is located on A, with its X axis

in the direction of the longitudinal axis through A's nose.

In this dynamic model this direction corresponds to the dir-

ection of A's velocity at a given time. As shown in Fig. 1.

three independent state variables remain. The state vectors

used are {x(t). y(t), z(t)) and {r(t), 0(t), z(t)), and it is

convenient to use both in the development.

The controls are the rates of turn of A and B, UA Mt

and U8 (t), respectively. Each is assumed to be constrained

in either direction by a constan maximum turn rate, UA~A

and UBMAI~x respoctively. To be realistic, a model should

include instanton~oos and sustained max-rate capability,

7
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- Aspect angle B

L 
r

A/

Angle-Off

Fig. 1. Co-ordinate System

as well ras changes due to limits on weapon tracking and re-

lease (Ref 12:3). However, in relation to the simplified

aircraft dynamics, constant maximum turn rates are reasonable.

The state equations of motion are thus

X a VF Cos z - V A U AY (2-4)

S. V sin z - U x (2-2)
3 A

J a UB - UA (2-3)

and - Va cos (z-0) - vA cos 0 (2-4)

6 C - (V sin (Z-0) + v sin e) -u (2-S)
r B AA

.- UB - UA (2-6)

8|
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where VA speed of A

VB speed of B

and both V A and VB are constant.

The Terminal Constraint

The conditions needed for a successful conclusio.

by either A or B (and conversely failure for the other)

depend largely on their respective weanon systetcx, The

most common condition used to end ganes is a fixed final

range from the target. In the plarar case, this generates

a circle of radius L (the weapon ranile) in the xy plane

around one of the combatants (Fig. 1, page 8). Othrr approaches

have been used to create .are realistic terminal condltions:

S0more complex areas such as elliptical kill probability

regions rotating behind each combatant (Ref 6:7), vnd simple

ones such as "gun spikes" pointing directly forward of each

aircraft (Ref 10). Use of ellipititl regions in the role

problem requires two such areas rotating behind the respective

aircraft; this ranidly becomes unwcrkable. The "gun spike"

concept has been used for role deterviratlon with a range

payoff, but suffers from being t "borcsight only" condition.

The popularity of a circular terminal condition is

partly due to the relative ease of obtaining closed form

solutions, and It is largely for that reason it is used in

this study. The condition is defined as

Xf2 -y 2 _L 2 .o (2-7)

f |f

|9
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r - L =2 0 (2-8)
f

where (xf, yf, zf) and (rf, f, zf) are the final states and

L. is the weapon range. This constraint has to be satisfied

for the game to end; how it ends, however, is determined by

the payoff.

The Payoff

for this class of game, the payoff (or cost function)

represents Zhe objective of the players ,hroughout the game.

It is thus fundamental to question of role. Lynch's general

purpose payoff, with A minimizing and B maximizing is

3 . a Cos 2() B f + b sin ( )(2)

c0 Cos B Jdt
tf

where a, b, c are constant weighting factors and 
6
A0 eB are

the angles between the velocity vectors of A and B and the

position vector between them (Fig. 1, page 8).

Changing the form of Eq (2-9) and rewriting in terms of

the polar co-ordinate system (r, 0, z), the payoff becomes

j . -(a _ 2 [a cos (zf-ef) ÷ b cos 6f] +
2 2dt( t) (2-10)c Cos (zf- Gf) f tfdt (-0

to

The middle terms represents the attempt by each player to end

the game (be it success or failure) with his best possible com-

binstion of angle off and aspect angle. The last term indicates

that when Ixf - Of! is small, then time becomes a critical

10
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CJ factcr. Increasing the importance of this term is intended

to polarize the roles of each player when termination is close,

by the purýLer seeking to terminate qu~ickLy, and the evader

trying to delay., The payoff was investigated in Reference 9

for two simple dynamic models, with a=b-0. The emphasis 4

in this work is the case were c-O (time is not included

explicitly in the payoff).

Outcomes to the Game

There are four possible outcones to a combat (Ref 3:61);

letting x denote the state of the game, these outcomes are

described by the terminal constraints

C 41A - A is successful and destroys B (2-11)

i B Is successful and destroys A (2-12)

SA n q =AB Both A and B are des-

troyed (mutual kill) (2-13)

x £A T WB O * Neither Anor B des-

troyed (draw) (2-14)

where 0A and ýB are the sets of states corresponding to sue-

cessful outcomes for A and B respectively. In its basic forn,

the game terminates the first time x enters either ýA' ,B' or

OAB" If it enters none of these sets (i.e. x e *D), there is

a draw (the result of the game is inconclusive).

For player A, outcome (2-11) is obviously most preferable.

and outcome (2-12) is least preferable. The preference order-

ing of outcomes (2-13) and (2-14) is not so obvious (Ref 3:64).

Using the single general purpose payoff J to represent

the outcome criteria in a zero sum game, the outcomes (A
11
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Q minimizing and B maxirizing) are defined as:

J <-JA - x f c , A . success for A (2-15)

J -- JB ý X.f £ --* success for B (2-16)

A < J < 3 B - .f C TA U -";B . draw (2-17)
f

hee. < J< J andi >JB A|--
where J - - max Bn -3B--A

the mutual kill outcome will not occur with this payoff

unless JA B"

Eqs (2-15) to (2-17) enarle a game of kind to be

formulited. The problem of sclution in the large is to

determine which of the oustcomes result from any set of

starting points in the gane space.

12n

12
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O III. Problem Formulation

The purpose of this chapter is to formulate a differ-

ential game on the basis of Chapter II and the theory summar-

ized in Appendix A. The Lynch payoff is !-d to estrblish a

game of kind, and the influence of the weighiiL•= ia,:tors in

the payoff is considered. The necessary cond;tions are ap-

plied, and possible control combinations are derived.

Payoff Formulation

The Lynch payoff of Eq (2-10) can be expressed as

J . P Q to dt (3-1)

A a~b 1
where P -- - y (a cos (zf-Of) * b cos Of)

and Q = c cos (zf- f)

As time is not usually the overriding factor in combat (apart

from total engagement limitations), it is not considered here

explicitly in the payoff. With c-0, the payoff becomes

a~b I (a cos (. Cos (3-2)

where z f is the angle off, and (zf-of) is the aspect angle of

B w.r.t. A (Fig. 1, page 8 ).

The relationship of the payoff to the terminal surface

of Eq (2-8) is shown in Fig. 2 (page 14 ). Linesof constant

payoff (isocosts) are drawn on a flattened tirminal surface

for a-b-l. The isocosts enclose two arenas, one around A's

best success point, and the other around B's. If limits are

set on the payoff, a game of kind is established, and

13
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the isocosts for those limits enclose areas that represent

the allowable zf and Of combinations for a successful out-

come by A an B. Using Eqs (2-15) to (2-17), in terms of

*, the outcomes (A minimizing and B maximizing) are

0 < * < CA success for A (3-3)

< * < a~b - success fcr B (3-4)

'A < < *B - inconclusive draw (3-5)

where fA and 0B may ce set to reflect the upper limits of

A and B's weapon system at terminal range. The neutral out-

come N is given by

a-b (3-6)

and Includes head-on and tail-to-tail outcomes as draws

(Fig. 2, page 14).

The size of the succes,. areas can be adjusted by the

limits set on the payoff (A and 0 ), and their shape can

be adjusted by the weightIng factors a and b. Increasing a,

increases the relative importance of (zf - 6.i: and similarily,

increasing b, increases the relative importance of Bf* The

effect this has on the shape of success areas is shown in

Fig. 3 (page 6). In this way, the payoff can be adjusted

lo represent the angular conditions required at termination

for a wide range of weapon systems. For example, consider

that both A and B require a close approximation to boresight

for their particular weapon systems, and have to be within a

C certain aspect angle to the rear of their opponent. Wit: the

is
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0
a=1 .8

ý-0.02 

'.

-40 -30 -20 /20 30 40 e

Boresight line
for B 

-0

Boresight line
-30 for A

Fig. 3. Variation of Isocosts with Weighting Factors

co--,4inate system used, this implies A would require only

a small variation in I fl, implying a large value of b in

the payoff; whereas B would require only a small variation

in Izf - efi, implying a large value of a in the payoff. This

is shown in Fig. 4. It is interesting that because of the

use of a .otating co-ordinate system, the form of the payoff

for success by A and B is different, even though their con-

ditions for success are the same. Within the'limits of his

study, this difference, and the implied lack of a clearly

defined neutral outcome, is not considered explicitly.

Application of Necessary Conditions

0• The Hamiltonian is formed from Eqs (2-1) to (2-6) as

16



GA/MC/74-1

OA

' B B ._.. -. A

BI

Z O Range

Zf Range ef Range

~i o A's success 
B's success

(a) (b)

Fig. 4. Close to Boresight Terain.tlon for A and B

H - H A * B Hit + H0 (3-7)

vh ore HA -SAUA and SA - I y - )A x - x -_x
whr H. A A A A y x (3-8)

H3  -S 9 UB and SB B xz (3-9)

H 0  VB ( x Cos z V (Xy Sin Z) - x VA

aV ( Cos (z - -sin (z - 0)).

VA(' sin e XrTcos 0)

Co-states. The co-state equations are

17
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0 C) A• (>-11) m

X. •- UA Ix
X,--U x~ (3-12)

A'V - V8(Xx sin z - Xy cos z) (3-13)

and in polar form

-(VA sin 0 + VB sin (z - 6)) (3-14)

X; . -x (VA sin 6 * VB sin (z - 0)) -

(VA Cos - VB cos (z - 0))

xi - x V sin (z -) - 6 VB cos (z - 6) (3-16)

Transversalitv. Adjoining the constraint of Eqs (2-7)

S 0 and (2-8) to the payoff of Fq (3-2) gives the transversality

conditions.

2 x
Yf ( cos - - a sin Vxf (3-17)

21.
3 ((a ff b)

x f

xyf _ - - (a cos zf * b) - a sin zf) * VYf (3-18)

Yf 2L 
3 xff f

xzf I (xf sin zf - Yf Cos zf) (3-19)

and in polar form

Xrf . v L (3-20)

.f b (sin f - a sin (zf ef)) (3-21)

z f 2 • jsin (zf e) (3-2)
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() Also, as time is free

H(tf) - H(t) = 0 (3-23)

The unknown multiplier v can bs eliminated (Appendix B

page 77 ) to give

Xyf [L sin If (UA b sin ef- UB a sin (zf-Of))

(VB Cos zf- VA) (b sin ef - a sin (zf-0f))]/ (3-24)

2
L(VB cos (zff) - V cos e)

X Yf[2L COs e- (b sin 0 a sin (zf-Of))]/ (3

(3-2S)
2L sin 0

Non-Singular Controls. It Is linear in UA and UB so

singular arcs are possible: for the non-singular case minA

max BIH gives the possible controls ~a OB as

-YA . o(sgn SA) itAmax (3-26)

oB ' (sgn SB) UBmax (3-27)

Singular Controls. N6cessary conditions for A to have

a singular arc give

SA . 0 A sxy A z and Az . -A9  (3-28)

S- . 0 X Ay 0 and A. = -rr tan 0 (3-29)

.S- 0 0A . 0 (3-30)

A 9

"-,, 19
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(S*)oA -V A )x X x > 0 (3-31) 0

hence A may have a singular control of ztro turn rate.

Similarly, the application of singular necessary conditions

for B give

S8  - 0 " X = 0 (3-32)

S' - 0 " X . X tan z and X) r A tan (z-0)ay x e r (3-33) N

S; = 0 O = 0 (3-34)

V A(; BvA x 0 for V"<z
(s~)=Cos z 2X - -"<Zf <2

< 0 for < Zf < _--W

Hence B may al=- have a singular control of zero turn rate.

If the conditions of Eqs (3-28) to (3-35) are all satisfied,

then both A and B may be singular at the same time. Satisfying

these conditions requires that y(t) - 0 and z(t) - 0, 180*.

Consequently, a direct tail chase, a head-on or a tail-to-

tail are the only situations wherc both may be singular.

Control Combinations. The non-singular controls re-

present maximum rates of turn fer A and B in either direction,

the singular controls represent straight dashes. There are

thas a total of nine possible control combinations (GA

± UAmax, 0 with a t ±UB.x, 0).

0
I,• 20
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IV. Closed Form Solutions

Analysis is very much easier if as nuch of the game

as possible is solved analytically. This chapter presents

closed form results for the states and co-states along

continuous control arcs, in terms of the time-to-go, and

the final states and co-states. To solve the game fully

it is necessary to identify the various surfaces separat.ng

these arcs. Some closed form expressions are derived for

these surfaces. Finally these solutions are related to the

terminal surface and payoff. Details of the derivations

are contained in Appendix B.

States and Co-states

3ver arcs on which the controls aA and aB are constant,

tne state and co-state equations are linear and can be solved

fairly easily, at least in the cartesian form (Appendix B

pages 77 to 81 ), to give, for non-singulo: arcs (a UAoax-

SaB U ± Bmax)--

x(t) - xf cos OAt * yf sin aAt + RB (sin (aAt-zf)

(4.-j)
sin ((aB- A) t + zf)] - RA sin OAt

y(t) -xf sin OAt + y f cos OAt + R8 [cos (aAt-zf) -

Cos ((aD-aA) t + Zf)] z RA(I- cos aAt) (4-2)

0
! 21
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z(t) = (ao - aA) t z f (4-3)

x (t)= Axf cos aA t X yf sin aA t (4-4)

y (t) = -X sin CA t * X y cos aA t (4-S)

t Bt
X (t) -X 2R sin BY [X Cos

z z f B 2 [)Y o (-2.

(4-6)
Xx sin a B t + ÷

where R, = VA/aA and RB Y B/0B, the radii of 'turn of

A and B respectively, and the final time at the end of

a given arc is zero, with time backwards along the ;xrc being

negative (t0 < 0, t < 0, tf . 0).

For singular arcs modified solutions are Reflrated;

for singular A (aA = 0, GB . ± UBmax)

X(t) = xf - VA t + RS (sin (zf + oet) - sin •f) (4-7)

y(t) - yf - RB (cos ( aB t + zf)-cos 0Z) (4-8)

z(t) Zf + B t (4-9)

x x W Xxf (4-10)

x y(t) A yf 0 (4-11)

AZM I Xzf -
2
RB Ixf sin (-2- + zf) sin . (4-12)

and for singular B (GA _ UAnax, GB = 0)
X(t) a xf Cos aA t÷ (yf - RA) sin GA t

Y B t Cos (zf - GA t) (4-13)

y(t) - -xf sin GA t + (yf - RA) Cos CA t (4-14)

0 Y t sin (zf a A t) + RA

22
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Sz(t) = 
t

f -A t (4-15) A

x t) = xf Cos a A t + Ayf sin aA t (4-16)

Ay(t) .- ),, sin a t + A Cos A t (4-17)

X (t) - = . 0 (4-18)
z Zf

Using Eqs (4-1) to (4-18) nine different arcs can be con-

structed from the nine possible combinations of control.

Game Surfaces

The game space is partitioned by surfaces which re-

present discontinuities in the controls and junctions

between the various types of arcs. For a full solution to

the game it is necessary to identify these surfaces, and the

3 regions they partition. Appendix A discusses some of the

more important surfaces, and the conditions necessary for

their solution.

Switching Surfaces. Switching of A's controls (other

than to zero) occurs when S= and S' • 0. Similarly

switching for B (other than to zero) occurs when S. . 0

and Si 0. Each of these conditions defines a five dimension

surface in the (x-X) space, which is reduced to four dimensions

by the free time conditions of Eq (3-23). For a given arc.

a closed form sulution can be found that gives the switching

time (backward from the final conditions) in terms of the

final states and co-states. The switching time is then a

parameter that specifies a point in the switching surf-ce.

23
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0 •~A'° •
,. -0Switching Surface SAO

Fi. . wichn Srfce adSingular Arc s

stuf ce oA

SSA <0

• TS

FIg. S. Switching Surfaces and Singular Arcs

Fig. S. shows a twO dimensional illustration of a switching

surface for A.

A's Switching Suface. For an A switching surface,

the condition SA = 0 gives

AxsYs . yX-A s "x -z = 0 (4-19)

where the states and Co-states of a junction point between

an arc and the surface are (IS, Is). Substitution in Eq (4-19)

of the closed form state and co-state solutions for an

arc gives

• • ) fyf - R (1 - cos Oats)] - Ay [Xf -

0 f A (4-20)

RA sin OAtsI - Arf 0

24Sa _ _ _ _ _ _--
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Q where ts is the time (negative) at which the control switches

going backwards along the arc (ts < 0, tf = 0), Hence Eq

(4-20) and Eqs (4-1) to (A-3) are a parametric solution for

the switching surface. The additional free time requirement

of H = 0 in Eq (3-23) gives

x Ys - x sX) aB + VB (XXs cos xs +

S(4-21)
YS .in x) - xx V = 0

which, on substitution of Eqs (4-1) to (4-6) reduces to

RB[XYf (v lin OAts- sin zf) +

xf (v cos At s - cos zf)] - Xzf 0 (4-22)

where v . VA/VB, the speed ratio of A to B.

B's Switching Suface. For a B switching surface, the

condition SB "0 gives

X . 0 (4-23)z s

Using the solution for X. (t) of Eq (4-6), in terms of

the final states and co-states and the switching time, the

B switching surface is given by

Xzf 1 RS[x y (sin zf - sin (aBts + z) f

Axf (cos zf - cos (ost s + zf)) = a (4-24)

The additional free time condition of Eq (3-23) must also

hold for the B switching surface and gives

k (xsYs A Xys) x A +(VB(0x cos x) +

X sin x) - XxsV A 0 (4-2S)

2S

" • '- ' " • .,2i

_____ _ _.__ II|11I• lllI
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or in terms of the final conditions and ts

-x Xyf YfXxf [ R Af 0 (4-26)
f f X B y + X1 - RA~ 0 4-6

where X - (CoX * (or - 1) cos ( 4Bts * zf))

Y X yf (sin zf + (or - 1) sin (oBts + zf))
f!

or Or - UB/CA, the turn ratio of B to A

Singular Surfaces. Singular surfaces are reduced

forms of switching surfaces; in addition to the switching

functions being zero, at a junction with a singular surface

it is also necessary that the conditions of Eqs (3-29) to

(3-,31) are satisfied for A (Eqs (3-33) to (3-35) for B).

Arcs that satisfy these conditions and switch to singular

controls at a point on the singular surface will remain on

S it (going backwards in time), until deliberately forced off

(Fig. S, page 24). Conversely, going forward, ar infinite

number of trajectories join the singular arc. The additional

condition of H - 0 reducesthe dimension of the surface to

three, and thus a surface in the state space.

A's Singular Surface. For an A singular surface,

Eq (3-29) gives

A . 0 (4-271

Using the solution for Xy(t) given in Eq (4-5), in terms

of the final conditions and the switching tine the singular

condition becomes

Xf sin oats yf cos OAt' - 0 (4-28)
The free time requirement still exists; substituting

26
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Eqs (3-28) tn (3-30) into II = 0 gives

YsY- cos z - v - 0 (4-29)

This is the equation in state space of the A singular

surface. Arcs that intersect this surface and satisfy the

singular switching conditions of Eq (3-28) to Eq (3-31)

switch to singular A control, and remain on the surface,

with their trajectories given by Eqs (4-7) to (4-12).

In cerms of the final conditions and switching time, Eq

(4-29) becomes

IAB. " Xf sin oat Yf cos CAts

RB cos (oAts - zf) A sin (1 - cos OAt) * 0 (4-30)

B's Singular Surface. For a B singular surface,

Eqs (3-32) and (3-33) give

At 0 (4-31)

and X sin z - A cos zs . 0 (4-32)

which in terms of the final conditions and ts become

a = 0 (4-33)

fand A sin (a ts + z) A Cos (a ts 4 z) 0 (4-34)
._ xf 8 f yf B f

As for A, the free time requirement must be satisfied, and

substituting Eqs (3-32) to (3-34) into H = 0 givts a B sing-

ular surface in state space as

(y cos z - x sin zs)RA (li/v) - cos 2s. 0 (4-35)

In terms of the final conditions and t, the condition is

27
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Q VB/OA - [xf sin (oBts+zf) - (yf-
(4-36) f

RA) cos z6 ts÷zf) + RB (I - cos aBts)] = G

In Chapter III page 20 it was shown that the only

possible conditions for both A and B to be singular at the

same time were v(t) - 0 and z(t) = 0, Substitution of this

into the equations for the singular surfaces (Eqs 4-Z:) and

(4-3S), with oA - 0 and a B -0, gives v = 1. This implies

that unless the speeds of A and B are the same, the joint

singular case does not exist, and a direct tail chase, head-

on, or tail-to-tail will not occur, other than instantap-

eously.

Dispersal Sufaces. From Appendix A, the major re-
"0-

: ýquirements of points on a dispersal surface are that two or

more paths, with differing control combinations on ear'-,

intersect, and that the payoff at termination is the same

for each path. For two paths this condition can be expressed

as
x--X1 =. sx =x s (4-37)

12

fl .2 = 0 (4-38)

where x , and x are the state vectors of each path at

the dispersal surface, and ý1 and 02 are their respective

terminal payoffs. if paths travel directly from the dis-

persal surfice to the terminal surfcce without switching

controls, as shown in Fig. 6, then using the closed form

"Q solutions for states and co-states over each constant control

arc, the dispersal surface can be expressed in terms of the

28
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S~Dispersal Point IDS •I

Oz A

OA > 'ýmin

mA>•in •

Dispersal Surface (DS)

S~Terminal Surface (TS)

Fig. 6. Characteristics of Dispersal Surfaces

terminal conditions as

x 2 5 Iaf(Ef 1'if2 tis t 2 s) = 0 (4-39)

Y2 " Y- a f 2 (Ef if2# t II t 2 ) . 0 (4-40)
a S 2 a a

z2 as f 3(fl if 2 tis, t 2 s) = 0 (4-41)

and 41 - + - f(Ifl) (4-42)

0 -2  # fxf2) (4-43)

29
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where t and t are the times of intersection alo'ig paths
S

1 and 2. Equations (4-39) to (4-43), together with tht free

time condition for each path, the terminal constraints, and

the transversality conditions, fully define a dispersal sur-

face. A more condensed form was not found; however, the

above was used as the basis for a numerical search for the

dispersal surface.

Solutions at the Terminal Surface

To complete the solution, trajectories and surfaces

in the game space are analyzed backwards from the terminal

surface; the first step is to find the controls at the TS,

and any intersections with other surfaces.

J OControls. For the controls at the TS, the condition

of Eq (4-19) gives

SA xfYf xyfxf -A f - xzf (4-44)

SB= Iz1 (4-4S)

B f

Substituting in the transversality conditions of Eqs

(3-21) and (3-22) for the co-states, results in

SA= -b/2 sin Of (4-46)
aI

S sSin (Zf - Of) (4-47)

Using the corditions of Eqs (3-26) and (3-27) the nonsingular

controls on the TS are

'Q0 UAX forO0< e <A UAMAX fo

30
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a= UAHx for -ix < f < 0

(4-48)

aAf UB•fAX for 0 < (zf-ef) < iTff

0
Bf UBMIAx fur -w < (zf-Of) < 0

This control distribution is shown in Fig. 7 (page 32N.

As Lynch points out (Ref 9:191) the controls are the exact

opposite of those produced in the classical barrier problem.

In this case, with the generalized payoff, A is turning into

line of sight A to B, and B is turning into line of sight

B to A. Hence using this payoff, the terminal controls are

aggressive. In a defensive position, each aircraft continues

turning when at the opponents kill range, in an attempt to

Q increase angle off and aspect angle and maneuver into an

attacking position.

TS Switching Surfaces. The points on the TS where

the switching functions S and are zero are intersection

points of the TS with switching surfaces. The lines of

"intersection thus formed are shown in Fig. 7 and are given

by SA - 0 - A switching line of 0 = 0, v; for -i < zf < V

S a 0 - B switching line of (zff-f) * 0, it; for (4-49)

If Sý - 0 or S' - 0, the possibility exists for singular
arcs to terminate on these switching lines. For A, the

singular condition of Eq (3-29) with Of = 0, i Mives

Ssi -VA xe /L (4-SO)

". ~31
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1 061. /./

-IT

°A=UA'IAX---- A= AIIA,

i 0 Fig. 7. Controls at the Terminal Surface

'Co

! Substituting in the terminal conditions of Eq (3-21)

I results in

= 2Asi (4-Si)

SUsing this, A's controls along the switching lines 0£=0,

I are

@A(tf') • UIA for 0 < Zf < it

OAt -) = UI for -'i zf < 0 (4-52)

oA(tf) •0 for af-. 0, it

. Hence the only co-ordinates st which an A singular arc can

terminate at the TS are (0, 0), (0, it), (it, it) (ii, 0). For

0 1, the singular condition of Eq (3-33) with (Zj - Of) 0, O,

0.2
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gives

s, B f (4-S3)

Substituting in the terminal conditions of Eq (3-21) results

in -by B sin Of

Si (4-54)

and B's controls along the switching lines z - =f 0,

Sare
OB(tf) - +U HAX for 0 < f <

OB(tf ) = -UBMAX for -W < Of < 0 (4-55)

aB(tf) - 0 for of . 0,

Hence the only co-ordinateson the TS at which a B singular

arc could terminate are identical to those for an A sing-

()ular arc. This implies that singular arcs only terminate

at the TS when both A and B are singular. The further re-

quirement of equal speed (page 28 ) virtually eliminates the

possibility of singular arcs at the TS.

TS Singular Surfaces. The A and B singular surfaces of

Eqs (4-29) and (4-3S) may intersect with the TS for certain

values of the game parameters. For A, 3ubstitution of the

terminal constraint into Eq (4-29) gives

L sin f + Cos zf - v - 0 (4-S6)

for the intersection line. The position of the line will

vary with L, RBI and v as shown in Fig. 8 (page Z4 ). This

33
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I Fi
0D

-L IL

TS

Fig. 8. Projection of A Singular Surfaces in zy plane

is because the singular surface given by Eqs (4-29) and

(4-35) are necessary, but not sufficient, for singularity.

In this case, a terminal cost gives trans-ersality conditions

which must also be satisfied for a singular arc. This

reduces the A singular surface to a curve in the state space

which is very unlikely to intersect the TS. A similar argu-

meat applies !or the B singular surface.

TS Dispersal Surfacus. The switching lines for B given

by Eq (4-48) also satisfy the conditions for a dispersal

surface (in a limiting sense) given by Eqs (4-39) to (4-43).

Thus the lines zf - 8f •0, x are the intersection of a B

dispersal surface, because only B has a choice of controls.

Similarly, the only positions on the TS at which A has a

dispersal condition are (0, 0), (0, v), (w, 0) and (w, w).

34
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These co-ordinates also lie on the B dispersal line and thus

represent points of "double choice" or "mixed strategy"

between A and B.

3S
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0 V. Analysis of the Solution in the Large

To complete the full solution of the game, it is

necessary to locate the game surfaces, and analyze the way

in which they partition the game space. The methoa consists

of constructing trajectories and surfaces backwards from

the terminal surface. The application of this method using

the closed form solutions is presented in this chapter.

Two techniques are used in the analysis:

1. Surface Solutions in Closed Form. The closed

form solutions for surfaces, though mostly transcendental

in the switching time, can be solved numerically. How-

ever, the sol'ution does become very complex if the

3 surfaces are connected to the terminal surface by

trajectories consisting of a number of arcs.

2. Trajectory Analysis. Trajectories are constructed

backwards from isocosts on the TS. The conditions of

Chapter III pages 19 to 20 are used to switch controls,

thus generating trajectories composed of a number of

arcs. The global optimality of these trajectories is

uncertain until surfaces can be isolated by parameter-

ization and projection of a large number of trajectories

(Refs 10, 11).

The advantage of the first technique is that it gives thi

surfaces directly, though vith difficulty for surfaces not

close to TS. The second method has the advantage that tra-

0 Jectories can be plotted to allow visual interpretatior;
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Q though this is very long and tedious, and of doubtful ad-

vantage for problems modeled with more than three dimensions.,

General Trajectory Patterns

In order to select some typical parameters for more

detailed analysis, the second technique was used to indicate

the general pattern of trajectories for various game para-

meters. The following main observations result:

1. Singular arcs occur and do not intersect the TS,

thus confirming the results of Chap IV page 33e

2. Some trajectories appear to contradict actual

experience; for example, as shown in Fig. 9 (page 38).

as B overshoots he is turning away froc A, rather

than inwards as might be expected.

3. As shown in Figs. 11 and 12 (pages 40 and 41 )

many nuccessful terminations result from trajectories

that correspond to a scissors maneuver (Ref 7:62).

4. To be as realistic as possible, and comparable

with other work, specific parameters selected for more

detailed analysis are

V A -80ft/sec U IAMX - 0.2 rads/sec

giving

R . 4000 feet

and

V5 . 720 ft/sec U " 0.24 rads/sec

S~giving
gvn R 3000 feet
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Thus the velocity ratio v = VA/VB = 1.1, and the fI

control ratio U BAX/U =AX - 1.2. The weapon range is

L = 2000 feet, and each aircraft is assumed to need

boresight to within approximately + 10" at an angle

off of within approximately 1 40"; this gives

=A . 0.02 a = 0.2 b = 1.8

defining A's success, and

OB = 1.98 a = 1.8 b = 0.2

defining B's success.

The general pattern of trajectories using these game

paraneters is shown in Figs. 9, 10, 11, 12 and 13. All of

these trajectories terminate on the upper half ((zf - 8f) > 0, )

of an isocost, and because of inverse symmctry about z f - f

0 0, w, they are sufficient to show the behavior of trajectories

terminating on the lower half. A lag ending for'A is con-

sidered as zif > f > 0 or zf < Of < 0. A lead ending for A

is considered as zf < ef > 0 or zf > Of < 0. Note also that

Of 0 is the boresight condition for A (Fig. 1, page 8 )

Application of Surface Solutions

Analysis of the trajectories in Fig. 9, shows that

the A singular arc is joined to the TS by one further arc.

Consequently, the closed form surface technique is applied

to locate the exact point at which the singular arc ends,

and the point on the TS at which the singular trajectories

terminate. This is repeated for a number of costs, producing

0 curves that represent the end of singular arcs in the game
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space (Fig. 14, page 44 ), and the termination of singular

trajectories on the TS (Fig. 15, page 46). Curves are

generated for vcrious weighting factors.

End of Singular Arcs. Fig. 14 shows that if A's success

is strongly oriented to boresight (small "a" and low 0f range),

then A turns out of his straight dash into B earlier (and farther

away) than he would for termination requirements of a small

aspect angle well off-boresight (large "a" and low (zf - )f)

range). Also, as the cost decreases to zero, there atpears

to be a lower limit on y. This is found by using Eq (4-29)

for an A singular surface. All the singular curves must lie

on this surface, so. that for a B > 0

i ( v- 1) RB and z - 0 (5-1)

For the parameters used, ymin is 400 feet and this agrees

closely with Fig. 14. This indicates that B has to be at

least that distance off to one side for A to go singular.

Termination of Singular Trajectories. The general

pattern of trajectories in Fig. 9, (page 38 ) suggests that

a large number of trajectories result in a singular arc,

which itself terminates, via one more arc, at one point on

the TS. Thus the terminal curves of Fig. 15 are lines on

the TS where termination occurs from a large number of starting

positions. The lines extend over a very much lower range

of Of than the total range of 6f possible for a given cost.

For example, if a - 0.2 and 0 x 0.02, then from Eq (3-3)

0 I of i O 12.6", whereas Fig. 15 shows that the singular

4S,
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trajectory terminates at 8f 2.0". However proximity to

boresight is gained by A at a cost in angle off (zf) which

is high; indeed for low values of "al, the singular curve

gives values of zf close to the maximum for a given isocost.

Thus Fig. 15 can be used to select weighting factors and costs

to represent the angular requirements, at a given ranee, of

differing weapon systems. The drawback in using these tra-

jectories is that they may be globally non-optimal for the

solution in the large; this requires further consideration of

the game, and is dealt with in Chapter VI,

Application of Trajectory Analysis

Before attempting to parameterize, trajectory projec-

Q tions are analyzed for the existence, and general position

of switching surfaces, singular arcs, and dispersal surfaces.

As the scissors trajectories illustrate, pointson switching

surfaces exist in large numbers, and considerably complicate

trajectory analysis.

B Singular Arc. As shown on page 45 a singular arc

for A (and its symmetrical counterpart) is foui,d for tra-

jectories that terminate with some lag for A ((zf - Of) > 0).

A singular arc was also found for B, as shown in Fig. 10,

page 39 ). However as this arc is connected to the TS via

two other arcs ((a< 0, 8 >0), ( > 0, > 0)), a BSoA B (A oB

singular c~osed form solution has not been attempted. An

interesting observation is that the arc is degenerate in the

sense that nonsingular arcs joining it on one side are almost
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Q parallel in the xy projection (Fig. 10). The B singular

arc thus resembles what Isaacs calls a semi-universal surface

(Ref 8:196). This can be shown analytically by considering

a singulsr and a nonsingular arc backwards from a point XBm

(tf = 0) on the singular arc. The singular arc state solutions

given by Eqs (4-7) to (4-9) are ;ubtracted from the nonsingular

arc state solutions of Eqs (4-1) to (4-3) giving the following

differences in states at a time t backwards along each arc

from X-
a~t a~t

Ax~~t2 -(2B - - at0) RsnRx(t) 2 sin 2 cos 2- (zB A - RA s~n aAt -

VBt cos (zB - aAt) (5-2)

SOBt a t
Ay(t) - 2RB sin _ sin (ZB - A)t)

VBt sin (zB - oAt) 
(5-3)

Az(t) - aBt (5-4)

The possible nonsingular-arcs are a B - ± 0.24 and a.A -0.2;

so that for t < 3 secs, oBt/2 is small and Eqs (5-2) and

(5-3) can be approximated by

Ax(t) • (R a t - VBt) cos (z A At) - RA sin aAt (5-5)

Byt B- (R a t - t

y(t) N( BaBt - V t) sin (z8 - oAt) (5-6)

Substituting aB>0 gives

Ax(t) N -RA sin aAt where oA < 0 (S-7-,

Ay(t) 0 0 (5-8)
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B

Thus for low values of t, there is only a small difference

in the x and y co-ordinates between the B singular arc and the

nonsingular arc joining it with positive B control. This

confirms the trajectory plots of Fig. 10. However, as for

the A singular case, there still remains the question of

global optimality for these trajectories.

Dispersal Surfaces. Direct closed form solutions

for dispersal surfaces are not z';ailable, but analysis of

trajectory projections from the limiting isocost indicates

some possible points on a dispersal curve. The locations

of some DS points are shown in Fig. 9 and 13; these are

special DS points representing a choice of control for ,oth

A and B. Considering the points in two groups:

1. A Iand BI. The points A1 and BI are similar be-

cause they probably both lie on the closest DS to the

terminal surface, and are thus likely to lie on the

bounds of a closed region of the game space (Ref 6:31).

(For a two dimensional problem this is definitely so;

for a three dimensional problem, closure does not

necessarily occur). Inside these regions (for point

BI) success for A is inevitable for optimal play,

regardless of B's actions. Thus point BI appears to

be the closest that B can reasonably allow A to ap-

proach, in a direct tail chase situation, before turning.

If B delays, then A's success is inevitable, and B's

10 condition at capture becomes worse the longer he waits
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to turn. A similar situation occurs at A for A with

respect to B's final success.

A2 and B With the A B, dispersal points, it is likely
2 2_____ 2' 2

that they do not lie in the first DS that the generating

trajectoriez intersect. So for a straightforward game

of purstit and evasion with no role change, these points

are likely to be in part of the game space which results

in a draw in optimal play,

The location of these points and the DS points on the TS

(page 34 ) will enable dispersal curves to be located for a

giien isocost; either by parameterisation of many trajectories,

or by using a numerical search technique, based on the DS

conditions on page 29 , to extrapolate from a known DS point.

Summary

In this chanter, the closed form solutions are applied

in an attemp. to solve the problem completely. Two techniques

are tried: direct application of the closed form surface

solutions, and analysis of trajectories. Some general tra-

jectory characteristics are observed, in particular, the

correspondence of many trajectorie5 to a scisznrs maneuver.

Precise location of A singular arcs enables some criteria

to be set for selecting the payoff parameters to match various

weapon capabilities. A singular B arc is found,and an inter-

esting approximation to a semi-universal surface is confirmed.

Finally some points on dispersal surfaces are located, and two

methods for locating the surfaces are suggested.
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t Success in fully defining the game space is limited,

largely by time., It does however make a start and lead the

way to a complete solution of the game.
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VI. The Role Problem

Until the game is completely solved, analysis of the

role problem is limited. However, in this chapter, a method

of role determination is discussed. Capture regions can be

determined for the game, and a method is proposed of estim-

ating regions of advantage which assist in role determination

outside capture regions. The results of Chapter V are related

to this concept, and finally the relationship with the clas-

sical game is discussed.

Role Determination

The role determination problem is considered to consist

of two parts:

1. Which player has an advantage, and to what extent?

2. Based on the relative advantage, what is now the

objective (the role decision) of each player?

Both parts are inter-related because the degree of advantage

obviously depends on the objectives. From the pilots point

of view, the questions of role are:

1. How good or bad is my situation?

2. What should be my goal?

For example, if the situation is good, then should the objective

be to continue, or to escape while that is possible? This

decision is easier if the amount of advantage is high or low.

For example, if one pilot is about to shoot down an opponent,

he is unlikely to flee, and his opponent has little choice but

to vigorously avoid defeat. However, if neither has a distinct
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0 advantage, then each may remain, or may be able to escape

the combat completely.

The choice of objectives in the role decision problem

also depends on the strategy needed to achieve it. For

example, it may be necessary to risk a close shave with an

opponent in order to reach a position of advantage. The

problem of role is thus very complex, and casts doubts on the

validity oý' a zero-sum game. Hewever, a zero sum game is

easier to handle, and gives some solutions to the role problem.

In principle, for the game as formulated, if the initial

states are known, the outcome is also known (assuming optimal

play by both sides). Thus the game space (G) can be divided

into four distinct regioc:s resulting in the four possible

outcomes (page 11 ), These regions are: RSA (success for A),

RSB (success for 5), RSAB (mutual kill), and R (draw).

Consider a problem, such as this one with the Lynch pay-

off, in which a mutual kill, RSAR, is effectively nonexistent;

if the states are in RSA, and A plays optimally, then the

states romain in RSA for the duration of the game, and tern-

inatlon occurs successfully for A ( 6 A in Fig. 16, page54 ).

A similar argument applies to B. In the other region R, both

players must play optimally for the states to remain in this

region and a draw outcome. If one player does not play optim-

ally, then the states can move closer to a region more favor-

able to his opponent. The boundaries between the regions

constitute "barriers" in the sense that they are not crossed

in optimal play. (Appendix A, page 74 ).
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fft

-

>\

-RSA

Fig. 16 A 2-D Representation of Regions of Success,

and Regions of Advantage Based on Optimal Play.

A method of role determination now exists for regions

RSA and RSB. If x c RSA' this implies A has an almost total

advantage and should press home his attack (i.e. a definite

pursuer); conversely, B has little hope of avoiding A and

should concentrate entirely on evasion (i.e. 9 definite evader).

A similar argument applies for x c RSB*

The situation in the region R, however, is not so clear.

Neither has a decisive advantage, nor is under an imm2.diate

threat. Each player presumably wants to maneuve' his opponent
into his own success region, though conceivably each may wish
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to escape while thc. going is good, The division of G

may now be represented by

c RSA 4 role determined/A's success (capture) region (6-1)

X c R ÷ role determined/B's success (capt-ure) region (6-2)

x C R role uncertain/draw occurs for optiral play (6-3)

where G R + RSA * R SB

RSA and RSP are capture regions resulting from this zero

sum pursuit-evasion game in which A is the pursuer, B the

evader, and vice-versa. Thus this gene formulation is useful

in defining regions of extreme advantage and disadvantage

(indeed complete success under optimal play 6y the pursuer).

These regions may be very small if the combatants have a

similar performance (Ref 6:32), and consequently, it is im-

portant to extend the role problem into the region R. The

apparent choice of objectives in P. suggests a non-zero sun

game; however, the problem here is whether the zero sum gane

and payoff, as formulated, can be used in this region to de-

termine role.

Roeions of AdvanIge

Thu firsT -art of the role problen in R is to deternine

regions of advantage.

One method of producing these regions is to expand

the solutions outwards from the 5uccessful limits, by changing

the terminal coat. to S iand h BoN' > i Axand ro nd) Asj shown it, fig. 16 (pri5e 51).thlis wotold result in expanding around
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the success regions RSA and These expanded regions

indicate states which would result in a draw under optimal

play for the game as formulated. The term draw is misleading,

since it may include a wide range of terminal states: from

a close shave (• • A to a head on = neutral outcome,

ON), However, if *A < 0 < OA is considered a good "raw outcome

for A, and 9 < 0 < 0. is considered a good draw outcome for

B, then the regions that result in these outcomes may be con-

sidered as regions of advantage.

The drawback with this method is that cn indecisive

outcome results, and the Pame continu1es indefinitely. Also,

the assumption that a draw outcome close to A's success

area ib good for A and places him at aun •dvantage, is not.0S
necessarily true. Indeed, it may be that if A just misses

B, then A is at a grave disadvantage (for example, on an

overshoot). This method is useful however, because the regions

of advantage generated represent the extent to which an

opponent could avoid a kill, should he wish to, by playing

optimally.

Another method avoids the draw outcome, but uses tra-

jectories which are non-optimal In the strict sense of the

game as formulate4.

Consider that in a region of advantage to A, his objective

is to minimize 0, and D's objective is to allow A to cone

very close to success, in the hope that by doing so, B will

t move into his own region of advantage. In other words B is

deliberately allowing himself to be drawn close to A's
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capture regions, R (this may also occur if B wants a draw,

but keeps making mistakes). This strategy is non-optimal

in the game as formulated; indeed B is virtually playing a

non-zero game by co-operating (at least for a time) with A's

objective. Consequently, trajectories resulting in RSA (or

extending from R SA in a backwards solution) are non-optimal

for B; nevertheless, they do represent almost the best that

A can achieve, with B co-operating or making mistakes. Thus

these trajectories may be used to indicate general regions of

advantage to A. Because player B is, at least temporarily,

helping his opponent, the resulting regions of advantage are

e..pected to be large.

A region of advantage for A may now be defined by those

starting points in R for which A is successful, if B, either

cannot avoid A's successful outcome, or is using a strategy

which would result in A's success (conversely for B). This

gives

X RAA iff B plays too < OA (6-4)

SR AS iff A plays to 0 > 1B (6-S)

where RAA is A's region of advantage, and R is B's

region of advantage. The possfbility also exists that the

regions of advantage may intersect (RAA n R AS 0 0).

The first part of the role determination in R problem

is now
SC R AA A's advantage (6-6)

o RAS A B's advantage (6-7)

C (RAA n RAB) ' Advantage to both (6-8)
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(R AB U R Ad).•

R AA0 
-

RAB

RAB

/ RAa nI

(RAB U-- AA) AA

Fig.. 17. A 2-D Representation of Regions of Advantage

Based on Non-optimal Play.

, and is shown in Fig. 17, page 58 . It follows that -.

RSA C RAA

RSB AB

To be complete, if RAA and RAB do not fill R (RAA U RAB R).

then x c (WAA u -A"D * no advantage to eithe-.

The second part of the role determination is to decide

"what the objective should be. For example, if B is in A's

region of advantage, RAA' should he play optimally for the

temporary respite of a draw, or should he allow himself to get

close to A's success region, RSA, in order to put himself in a
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S.good position. Conversely, should A continue to make the

most of his advantage and Play towards a kill. Both may

decide, if able, to ascape. Clearly, this problem requires

other game formulations. ,

Regions of Advantage and the Dispersal Surface. The

game formulation gives trajectories and surfaces backwards

from an isocost 0 A on the TS, hence regions of success

and advantage (as defined above) should energe. Looking at

the game in this way, disnersal surfaces do not terminate

trajectories, although they still are used to en-zose regions

of success and advantage. Consider a 2-D example shown in

Fig. 6 (page 29 ), with a DS point XDS on a trajectory

leaving the TS from *A" Continue along the trajectory from

XDS to Y. For the game as formulated the path YXDS is

strictly non-optimal because YZ results in a better value

(z) for B. Thus point Y lies in the region R, and XBS

defines a point on the boundary of A's success/capture

0 . region, RSA. However, if B accepts the outcoie 0 < 0A' then

YX may be used to indicate A's regions of advantage RAA.

Results and Role Determination

As suggested in Chapter V, it is likely that DS points

A1 and B1 of Figs. 9 and 13 are on the surface that encloses

the success regions RSA and RSB. Thus, as expected, the

capture regions themselves are relativaly small (Ref 6:46).

Trajectories extending beyond these points show a general

pattern; virtually all of B's successful trajectories are
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0 forward of him, are within his weapon range on either side,

and are cvershoot scissors trajectories. This general pattern

is a reasonably valid result for a slower more maneuverable

machine. On the other hand, A's successful trajectories

cover a larger part of the x-v plane, are not so often scissors,

and include singular "catch-up" arcs. Here again, the general

pattern is consistent with the faster aircraft. Furthermore,

the trajectories show that A has a larger region of advantage

than B. Intersection of RAA and RAB also seens likely to

occur forward of A's terminal area.

Consider again the DS point B2 (Fig. 9, page 38 ); if

B decides to avoid,, one of the wayr he could do so would

be to remain on % collision course and accept a neutral

(i.e. play optimally in the hoieth-t A will do likewise). flow-

ever, if he decides this is not good enough, and tries to

maneuver into an attacking position, he may first be obliged

to accept a close shave from A by entering, and holding a

turn along a trajectory terminating in 0A* Then A, having

missed (hopefully) and overshot, gives B his opportunity.

Whether th~s maneuver is the best for B is uncertain, what

can be said however, is that as B2 lies in the region R, and

on a *A trajectory, it is a voint in the surface of A's

region of advantage RAA. The indication at B2 is that that

point is in RAA for all angles off, z.

A different situation arises at point 83 (Fig. 9, page 38

here B is overshooting A and is turning outwards. This seems

60



GA/?IC/74-l

contrary to experience because he is so close to the TS that

by turning in, it apnears he could easily achieve a draw out-

come of * > 0A' and get into an advantageous position. The

implication is that tnis part of the trajectory lies in R,

and indeed on the surface of RAA' However, here the region

of B's advantage RAB' extending forward from B's success

region, is very close. Thus B, by turning in at B3 is likely

to move into RAB a lot quicker, and certainly with less dan-

ger, than following the trajectory that results in 0A' and

accepting a close shave.

One more example further illustrates that, although

A trajectories in R are useful to locate regions of advant-

age, they are not necessarily the best strategies for either

of the players. Their strategies will result from the role

decision problem. Coj:itder a scissors maneuver in which A

is overshooting (Fig. 13 page 42 ), it is likely that most

of the trajectory is in R, and defines RAB; however, as such,

A is not obliged to accept the scissors as being the best

way of regaining the advav'age (although he may be so obliged

because of linited information etc ). Indeed some temporary

draw outcome (created by say, a singular dash) could possibly

get A into his region of advantage RAA faster, and in less

danger, than continuing to B's success region RSB, and finally

fB1 This trajectory is a "degenerate scissors" in the sense

that B's movement about A's longitudinal axis is small. Further

0 investigation may reveai a singular arc here. Thus the
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results show that:

i. Using trajectories beyond capture regions is

useful in establishing regions of advantage on

which role decisions can be based.

2. These trajectories are not necessarily the best

way to move from one region of advantage to another.

A full solution to the game is needed to confirm the prospect

in subpara 1. and throw further light on the problem in sub-

para 2.

Relation to the Classical Game

It is interesting to relate the results of this game

to the classic game formulation and resulting barriers (Ref 8).

3 Using Lynch's work on barrier closure (Ref 9:106) it was

found that, with the parameters used in Chapter V for detailed

analysis, barrier closure did not occur. Thus B has no

chance of escape (for 0 < tf < -, and capture defined as B

simply crossing the TS), and conversely A can always do so

(at least when outside the TS).

Thus the genexal pattern of trajectories and areas of

Ldvantage found using the Lynch payoff without time, agrees

with the classical formulation. However, the introduction

of a payoff that reflects a desire to remain in n~mbat rather

than escape appears to have created capture regions fer both

A and B and altogether made the model richer and more: realistic.

0Summa.y

The game of kind formulation from a terminal payoff
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cap be used to determine capture regions and to indicate

regions of advantage. For the capture regions, role is

deternined. The regions of advantage are useful for making

role decisions, but do not indicate the actual strategy to

use. Results so far confirm this, but the complote

solution to the game is reouired, The classic game gives

the same basic results in a degenerate form.
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VII. Conclusions and Recommendations

Conclusions

The primary objective of this thesis was to study

the application and validity of the generalized Lynch pay-

off to the problem of role determination in a free time,

zero sum, perfect information differential game model of a

two aircraft combat. The secondary objective was to establish

techniques for using the payoff in simple dynamic models.

A constant speed, horizontally planar dynamic model

was used, and time was dropped from Lynch's payoff. This

resulted in valid controls at the end of the game, and

closed form solutions were derived for the terminal co-states,

W for the states and co-states along constant control arcs,

and for switching and singular surfaces at junctions. These

solutions were then used directly and indirectly to partition

the game space outward from the terminal surface. This was

not fully achieved, though isolated singular arcs were ident-

ified and confirmed for tnis type of game, and their location

and termination in relation to various payoffs was found.

Some dispersal points were located, which gave an indication

of partitioning and capture regions for each combatant. A

strong boost to the validity of this approach are trajectories

that correspond to practical scissors maneuvers. Unfortunately, •

much of the length of these trajectories are likely to be

non-optimal for the game as formulated; however, a technique
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0

surfaces, to estimate rqgions of advantage for each player. A

comparison with Isaacs' classical barrier formulation agrees

broadly with the general pattern of trajectories produced

by this formulation.

Hence the thesis has achieved both objectives to

some extent, and enables a limited main conclusion that the

Lynch payoff, in its terminal form, shows some promise

for producing solutions for simple dynanic models that bear

some resemblance to actual combat. Furthermore, the payoff

can handle a wide range of weapon systems.

O Recommendations

This thesis should definitely not be regarded as

approaching a reasonably valid differential game model of

aerial combat. Not only must the solution in the large

be fully completed, far too many important factors have had

to be assumed away, in order to make some initial progress,

Consequently, there are four main recommendations

for further investigation:

1. The complete partitioning of the game space

and full investigation of the use of advantage

regions in roie determination. This will involve

refining techniques for the location of the game

surfaces.

0 2. The effect of including time in the payoff and the

interaction with other game formulations, in
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particular a non-zero sum formulation.

3. A full parameter investigation of the solution

behavioitr.

4. The extension of the game model to include factors

such as restricted information, and the extension

of the dynamic model to include variable velocity

and altitude.
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Appendix A

Differenti 1 Gamc Theory

The purpose of this appendix is to summarize

differential game theory apnlicable to the two person,

zero sum, perfect information game considered in this study.

Refarences 1, S and 8 form the basis of this summary.

Game Formulation

Two players are constrained by their dynamiics to

x - f(%, u, v, t), E(toj . X (A-I)

0 where k is the n - dimensional state vector, u is the m -

---- dimensional control vector of one nlayer, and v is the p -

-Iinensional control vector of the other. For simplicity,

consider u and v each to be one-dimensional. Both u and

Smay be subject to constraints. The players may also

have to satisfy a terwinal constraint.

'(x (tf), tf) - 0 (A-2)

A cost function (payoff) is defined as

tf
J 6(X (Itf), tfj + L (, 'X , v, t) dt (A-3)

to

and the aim is to find the controls u" and v" such that

J (u*, v) < J (u', v. ) : 3 (u, v') (A-4)
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If u* and v° can be found, the pair (u, v*) is called

a saddle point of the game, ail .T (u* v°) is called the

value.

Necessary Conditions for a Solution

The existence of a solution depends on the commutative

condition that

min max J (u, v) = max min J (u, v) (A-S)
U V V U

A necessary condition for a saddle point is that

the Hamiltonian (i1) defined as

H (x, ), u, v, t) = Xt f + L (A-6)

must be minijized over the admissable set of u, and

maximized over the admissable set of v, such that

If* - min max If = max min H
U v v u (A-7)

giving, if there are no control constraints

I- U - 0 and || = 0 (A-8)U v

The commutative condition of Eqs (A-S) and (A-7)

is satisfied if || is separaole for u and v. If u and v

appear linearly in II %nd are constrained by

lul : umax and Ivi < v (A-9)

with switching functions Su and Sv defined as

SS (. It and S (x, X) - | (A-10)U (- -) lU V - - V

__--_)
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The saddle point controls are given by

u* - Ureax if Su < 0

u*= -.u if S > 0• x u (A-Il)

v* - v if S > 0max V

V* = -v if S < 0max V

Where there are no state denendent control constraints, the

n - dimensional co-state vector A is given by

_ - -l1 (A-12)
x

subject to the transversality conditions

)_(tf) - Ox (tf) . v t (ti) (A-13)

l1(tf) = - (tf) + v _p (tf) (A-14)
t -t

where v is a constant multiplier.

If time does not appear explicitly in either I1

or the control constraints, then II is constant. Also, if

the problem is one of frec final time, then Eq (A-14)

implies that

H(tf) - 11 (t) - 0 (A-IS)

If u and v are expressed as functions of time and

the initial states, then this is an open loop solution.

If they are expressed as functions of time and the instan-

taneous states, then the solution constitutes a closed

loop law.0-
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Singular Controls and SurfaceF

When the controls u and v apnear linearly in II

the possibility of solution arcs with singular controls

exists. Using the switching functions defined in

Eq (A-10), If may be arranged as

If = A T + S u Sv (A-16)

Taking the case where S = 0, If then beconesu

independent of u and thus minimization with respect to

u is not possible. Similarily for v, if S 0= . However,

a necessary condition for a solution on a singular arc is

2q-1
Su (X, A) = Su (X, - - Su (x, A) - 0 (A-17)

where successive differentiation yields a function

2q
S (x, A, u) - 0 (A-18)Su

which is explicit in u and may be solved to yield a

candidate for u* on the singular arc, Thjý nust sgtisfy

the generalized Legendre-Clebsch condition

(I)q a f 5 Z q) ,_ 0 ( A-19)au (+

and xt junctions with nonsingular arcs, the condition

' 2q) < 0 (A-20)

Junction time

0O must also be satisfied.
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Equation (A-171 gives a singular surface of dimension

2n - 2q in (x-A) space; with the additional constraint

of Eq (A-1S), in a free time problem the dimension becomes

2n - 2q - 1, If n - 3 and 2 = I this yields a sirgular

surface in the state space on which all singular arcs must

lie. Hence intersection with this surface is a necessary,

but not sufficient condition for switching to a singula.

arc Another important nroperty of singular arcs is that

they can be joined by an infinity of paths.

Switching Surface

A switching surface consists of points at which the

controls are discontinuous. From Eqs (A-il) and (A-17)

the controls 3witch only when

S = - (for u), and S . 0 (for v) (A-21)
U V

This condition defines a switching surface in (x-A) space

and implies that a singular surface is a particular type

of switching surface, also satisfying Eq (A-17).

The Barriers and Ganesof Kind and Degree

Isaacs (Ref 8:35) classisfies games into those of

"kind",and those of "degree". In the game of kind, the

primary interest is whether or not termination (as defined

* by the game) occurs. For a game of degree however, term-

ination is assumed to occur, and the players' objectives

are to hasten or delay termination, or to minimax a
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C) continuous payoff.

There is not a clear distinction between these classes

of games (Ref 8:230); a game of kind cart be regarded as one

of degree in which bounds are placed on the terminal Pay-

off. Termination of the gaue is then defined as occurring

only when the constraints are satisfied and the payoff is

within the specified bounds. In the usual classical form-

ulation (Ref 8), the terminal payoff, in a game of degree,

is the final time (tf), and the terminal constraint is the

circular region x -y2 . L . The game becomes a game of

kind when the bounds 0 < tf < - are placed on the payoff.

and the only acceptable outcome must be within these bounds.

Hence the o'sual classical formulation of a game considers the

possibility of the terninal constraint ever being satis-

fied.. Games of degree with terminal payoffs can, in a

similar way, be treated as games of kind (Ref 6).

For a game of kind there may be a surface in the qane

calltd a "barrier". In the classical formulation this

surface consists of those starting points which end at the

limit of all possible terminations (BUP), In the more gen-

eral sense, a barrier consists of starting points which

terminate on the bounds set by the terminal payoff. If

the barrier encloses entirely some region of the gave space

then the space is divided into distinct regions of success

and failure (Ref 3:66).
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Dispersal Surface

There are many other possible surfaces (Ref 8 )

One of the most comuon is the dispersal surface, defincd

by

JI (IDS) = J2 --DS) ------ K (xDS) (A-22)

where JK (-DS) represents the value of the payoff along the

Kth possible path from a single point x DS on the dispersal

surface. Figure 6 illustrates this for a two dimensional

problem with K = 2. Intersection with the dispersal sur-

face thus represents a decision point at which one, or

sometimes both players may be able to choose strategies,

0 knowing that in either case the payoff will be the same

regardless of the choice, In representing the limit of

optimality of a trajectory, it is useful fcy terminating

arcs and bounding regions,

0
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Appendix B

Derivation of Closed Form Solutions

Purpotse i

The purpose of this appendix is to show the derivation

of closed form solutions to the game formulated in Chapter 111.

Terninal Co-states X and X
xf - Vf

The terminal co-states X and X are qiven by

Xfx Yf

ff yf

where 2 ___ (a coi (zf-Of) * b cos Of) +S2 2

V f v f- L)f (B-l)

or $ =(:-•)-(a cos (zf-O8 * b cos 60)

22
rv2rL )

To avoid expressing 0 in cartesian co-ordinates and taking

partial derivatives directlv, the chain rule can be used

giving
0 =. Ixx8 VY

or 0• L(> cos ) - Ax sin Af) (0-2)•kf L(yf f f Af

and A . (X cot 9e - cosec Of) (R-3)
Yf
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The minA maxB II(tf) f 0 condition gives

Xx f[V cos zf - VA + OAyf] +Sf ! = -

X [VB sin zf - AXf] + X2f (aB A) 0 (B-4)) (

Substituting

X 0 • (b ;in O - a sin (zf -

ard Xz = 0zf 1T a sin (zf - Of) (B-S)

and Lq (B-3) into Eq (B-4) gives an equation in terms of

A anc the final states which can he solved to give
Yf

X) . U.W (8-6)
yf T

where U - sin Of (b sin OfoA - a sin (zf - Of) %)

(VB cos z- VA)

W - (b sin Of - a sin (zf-Of)) L

V - (VB cos (zf-0f) - V A con 6f)

Substitution for Xof in Eq (B-3) now gives Xx in terms of

X• and the final states as
Yf

X [2L X cos Of - (b sin Of - a sin (zf-ef))1
Xf yf

2L sin Of (8-7)

State and Co-state Solutions

Over an arc of constant controls aA and oB, the state

and co-state equations in cartesian co-ordinates are
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c B Cos z - VA a vAy with x(tf) = xf

(B-8)

S• V sin z - aAX with y(tf) = Yf

= oB " aA with z(tf) = zf

and

=X . a y with Xx(tf) = X
x A x Xf

' • -OAx with X (tf) = X

X* - VB(Xx sin z -X cos z) with X (tf) = X

y Z f

Nonsingular Solutions. For nonsingular arcs with

aA 0 0 and aB 0 O, three solutions are obtained immediately

asz(t) - (a B-CyA) (t-t f) + zf (B-10)_

xa(t) - A'sin lAt + B'cos aAt (B-Il)

X y(t) = -B' sin aAt * A'cos oat (B-12)

where

A'l- ) l sin oAtf Xyf Cos aAtf

and
B'- )Xxf cos -Atf - Iyf sin a tf

Letting tf - 0, so that along an arc t < 0, Eqs (B-10) to

(B-12) become

z(t) = (O,-OA) t + zI (B-13)

Sx(t) - Xyf sin aAt X cos aAt (B-14)

xy(t) - -X sin OAt Xy cos OAt (B-1t)
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Substituting in Eq (B-9) for z, Xx and X vgives

X - VB(Xf sin (aBt +Zf) - yf os (aBt + Zf) (B-16)

and solving with Xz (tf = 0)= Xz gives

x Z(t) = f + R [Ayf sin zf X xf Cos Z] -

ffr

RB[xyf sin (aBt + zf) X Xf cos (aBt + zf)l

(B-17)

or a t a t

x (t) = -Z " 2 RB sin 2 y cos (-B- + Z)+

Ot

Ax sin B + Zf)]x f I

where R. . V IaB /

0 Finally, for the states x(t) and y(t), a second order DE

can be formed from Eq (B-3) giving

0 x . V B( 2 a - a ) sin z

Substituting in the solution for z(t) gives

A B A VB(2 
0 A - s [(a - t + z f

with x(tf - 0) =x

The solution is now straightforward, yielding

x(t) - xf Cos OAt + Yf sin OAt + RB [sin (OAt - Zf)

(B-IS)

sin ((aB - A) t * zf)] - A sin aAt

Differentiation, and substitution for i in Eq (B-18) yields0I
79
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y(t) -xf sin aAt yf Cos OAt * RB [cos (oAt - Zf)

Cs((COB - aA) t + z f)4 RA 01 - Cosa OAt)

Thus Eqs (B-18), (B-19), (B-13). (B-14), (B-1s) and (B-16)

are the nonsingular arc closed form solutions with tf = 0.

Singular Solutions. Because RA and RB are infinite for

singula: controls, the solutions for nonsingular arcs

cannot be applied directly. For an A singular arc, sub-

stitution for aA - 0 in Eqs (B-13), (B-14), (B-is) and

(B-17), and application of the singular conditions X i 0
y

yields

1(t) - Zf * OAt (B-20)

x •x(t) X •x (B-21)

x (t) Xyf 0 (B-22)

a Bt OBt
A(t) X 2 RB )x sin sin BT + Zf) (B-23)

f f

Solving the equations of notion directly with aA = 0 gives

x(t) = xf - VAt + RB (sin (zf a oBt) - sin zf) (B-24)

y(t) - yf - RB (cos (OBt * zf) - cos zf) (B-2S)

For a B singular arc, substitution of B8 0 into Eq (B-13)

with the singular condition Xz = 0 gives

z(t) = Zf - OAt (B-26)

X(t) - x 0 (B-27)

0 z 
I

so
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and A (t) and X y(t) are still given by Eqs (B-14) and

* (B-lI). Solving the equations of motion directly with

aB 0 gives

x(t) = X f Cos C At + Cy f - R A) sin a At +

V Bt ccs (zf -OAt) (B-28)

y(t) --x sin At 4 Cyf - RA) cos OAt

(B-29)

V Bt sin (zf a At)

'I0
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